两种种植钉位置在内收上牙列中的三维有限元分析

邓 怡¹⁾,姚 激²⁾

(1) 昆明医科大学附属口腔医院,云南昆明 650100;2) 昆明理工大学,云南昆明 650504)

[摘要]目的 探讨种植体支抗内收上颌全牙列过程中,常用2种种植钉位置牵引上牙列时的生物力学效应 和影响. 方法 应用螺旋 CT、MIMICS、ANSYS 软件,建立两种不同位置微种植体支抗内收全牙列的三维有限元 模型,计算 1.5N、2N、2.5N、3N 牵引力加载下上颌全牙列的应力和位移分析. 结果 在2个不同种植体植入部 位,后牵引上牙列时,2种牙列位移趋势接近,随力值加大,合平面发生顺时针旋转,同时,种植钉位置靠后时 牵引力值可以适当加大,合平面旋转趋势较小,牙列所受应力较小. 结论 通过改变种植钉植入部位,控制合平 面旋转,减小牙弓中各牙齿所受应力.

[关键词] 三维有限元; 微种植体支抗; 生物力学 [中图分类号] R783.5 [文献标识码] A [文章编号] 2095-610X (2015) 12-0123-05

Three-dimensional Finite Element Analysis of Maxillary Dentition Retraction with Two Kinds of Micro-implant Anchorage Location

DENG Yi $^{\mbox{\tiny 1)}}$, YAO Ji $^{\mbox{\tiny 2)}}$

 Dept. of Orthodontics, The Affiliated Hospital of Stomatology, Kunming Medical University; 2) Kunming University of Science and Technology, Kunming Yunnan 650101, China)

[Abstract] Objective To investigate the biomechanical effects of two kinds of micro-implant anchorage location for en-masse retraction of the maxillary dentition. Methods The three-dimensional finite element model of the maxillary dentition en-masse retraction with micro-implant anchorage was constructed with CT scanning data, MIMICS and ANSYS software. Then the force and the initial tooth displacement were calculated when two kinds of micro-implant anchorage located under 1.5N, 2N, 2.5N and 3N force, respectively. Results With micro-implant anchorage location changed the whole upper clockwise rotated, and when the micro-implant anchorage was inserted between the first and second molars, the force could properly be increased, the whole upper clockwise showed a lesser extent and the stress on the dentition was less. Conclusion The upper dentition movement can be changed effectively by the different micro-implant anchorage location.

[Key words] Three-dimensional finite element; Micro-implant anchorage; Biomechanics

上颌前牙的位置是影响口腔颌面部软组织侧 貌的重要因素之一^[1],在正畸治疗中往往需要对前 突的上颌前牙进行适当的内收^[2-3].对于前突的患 者矫治成功的关键即是对支抗的控制. 近年来微 种植体支抗技术 (micro-implant anchorage, MIA)的 出现为上颌前牙的内收方式带来了根本的变化^[4]. 由于微种植体支抗可以方便的选择植入的部位,临 床中在内收上前牙时,种植钉通常可以有2种位置 选择,本研究将通过建立种植体支抗整体内收上前 牙的三维有限元生物力学模型,对2种种植体位置 内收上颌前牙的力系进行探讨.

[[]基金项目] 云南省教育厅科研基金资助项目(2013Y277)

[[]作者简介] 邓怡(1970~), 女, 云南昆明市人, 医学硕士, 副教授, 主要从事口腔正畸临床教学工作.

1 材料与方法

1.1 建立种植钉 - 内收上牙列的三维有限元模型 1.1.1 上颌骨一上牙列有限元模型的建立 选用 个别正常恒殆,具有完整上牙列,牙齿在上颌骨上 排列整齐,无明显的错殆畸形,上颌骨无前突及后 缩,牙齿与颌骨的关系基本协调,牙弓中没有第3 磨牙存在,牙体外形完整无缺损的成人头部 CT 片 (由昆明医科大学附一院 CT 室提供). 采用德国 Simens 公司的 Defination 双源 64 层 CT 自颅顶至下 领骨对整个头颅进行连续扫描,重建层厚 0.6 mm, 层距 0.3 mm. 将扫描原始数据,在 CT 图像工作 站以 DICOM 文件格式输出.利用螺旋 CT 扫描获 取模型的空间几何信息,原始数据以DICOM格式文 件传输,MIMICS软件进行图像分割,提取上颌骨--上牙列硬组织的内轮廓线和外轮廓线并以IGES格 式文件输出,将IGES文件导入ANSYS软件,建立包 含所有上颌牙齿的上颌骨的三维几何模型.

在此基础上用 beam 188 单元建立 0.46 mm × 0.64 mm 弓丝,最终形成 813 626 个单元数,含弓 丝的上颌骨—上牙列的三维有限元模型,弓丝的位 置基本保证通过前牙的临床牙冠中心点,通过弓丝 把上颌 14 颗牙齿完全连接在一起,使得上牙列可 以发生整体移动.

1.1.2 种植体支抗有限元模型的建立 根据临床 上种植钉内收上颌全牙列时,种植钉通常可以选择 在第2双尖牙和第1磨牙牙根之间(site1),或者 是在双侧颧牙槽嵴约上颌第1磨牙和上颌第2磨牙 的牙根之间(site2)植入,两个种植钉位置距离 弓丝10mm,种植钉长度11mm,骨内长度9mm, 直径1.5mm,按照临床实际牵引模式,从种植钉 到双侧尖牙和第1双尖牙的弓丝中点位置进行牵 引,模拟临床镍钛拉簧的加力情况,在牵引点和种 植钉之间施加1.5N,2N,2.5N,3N的牵引力. 拉簧采用link180划分单元,最终获得种植钉内收 上颌全牙列的三维有限元模型.

1.2 材料属性和网格划分

本研究中采用了 10 节点 solid 185 单元对模型 进行网格划分,形成了 813 626 个单元和 153 272 个节点的种植体内收上牙列三维有限元模型(图 1).各材料都假设为均质、各向同性的线弹性材 料,材料变形为小变形.各种结构材料的弹性模量 和泊松比见表 1.

1.3 计算条件的设定

本模型包括 14 颗牙的完整上牙列,为方便计

算简化结果,选择左右1、3、6共6个牙进行计算 (图 2),前牙将切缘中点,尖牙牙尖点,磨牙近中 牙尖点作为参考指标,所有计算结果以X代表牙 列的冠状方向(水平向)运动趋势(向右为正), 以Y代表矢状运动方向(向后为正),以Z代表垂 直方向运动趋势(向上为正).上牙列补偿曲线曲 度假设为零度,弓丝与牙之间施加固定约束,相对 位置保持不变,各邻牙之间始终发生接触且接触位 置无改变.

表1 模型的材料参数

Tab. 1 The parameters of materials used in three – dimensional finite element model

材料类型	弹性模量(E,Gpa)	泊松比(Ⅴ)
牙槽骨	1 3.700	0.30
牙齿	20.700	0.30
弓丝,种植钉	176.000	0.30

图 1 加载模型图 Fig. 1 The loading model diagram

Fig. 2 The node graph for reference

2 结果

通过分析上牙列在种植钉不同位置的牵引受力情况:水平向,磨牙向腭侧位移,尖牙向颊侧 位移.矢状向,前牙,尖牙,磨牙均向远中位 移.垂直向,前牙及磨牙向合方位移,尖牙向龈 方位移.不同种植钉位置(Site1和Site2)内收上 颌全牙列的过程中,水平向、矢状向、垂直向3 个方向的位移趋势基本相同,但在模型所受应力 上Site1比Site2大.

2.1 牙齿位移测量值

种植钉不同位置(Site1和Site2)加载1.5 N, 2 N, 2.5 N, 3 N以后, 牙齿位移测量数值见表1~7.

2.2 牙齿应力及位移趋势图

牙齿应力及位移趋势见图 3~6.

2.3 数据分析

中切牙位移趋势:随着加载力值的增大,矢状 向,种植钉Site1中切牙在1.5 N时远中位移最大,在2 N 远中时位移最小,此时垂直向合方位移最大,此 后,随着加载力值增大位移逐渐增大. Site2:矢状 向,2.5 N时矢状向位移增大,垂直向,Site1和Site2 均随加载力值增大,合方位移增加,其中site1比 Site2 位移量更大.

尖牙位移趋势:横向, Sitel 和 Site2 随力值增 大双侧尖牙向颊侧位移增大, Sitel 位移较大. 矢 状向, Sitel 和 Site2 随加载力值增大均向远中位移 增大,其中Site1 位移大于Site2. 垂直向,Site1 尖 牙随力值增大向龈方位移增加. Site2, 随力值增 加, 龈方位移逐渐减小, 在 2.5 N 时最小, 此后随 力值增大而增大.

第1磨牙位移趋势:横向,随力值加大双侧磨牙 向腭侧位移,Site1在2.5 N时磨牙位移最小,Site2在2 N时磨牙位移最小. 矢状向,Site和Site2磨牙随加载 力值增大,远中位移加加大. 垂直向,Site1和Site2均 随力值的增大,磨殆向位移增大.

全牙列位移趋势: 在种植钉的不同位置内收全 牙列时,相同力值作用下 Sitel 和 Site2 发生的位移 趋势基本趋于一致,即随力值增加尖牙段牙弓变 宽, 磨牙段牙弓变窄. 矢状向随牵引力值增大, 前 牙远移量增大. Sitel 牵引力值为 2 N 时合平面发 生旋转最小, Site2 牵引力值为 2.5 N 时合平面旋转 最小.相同作用力下,Site2 全牙列所受应力比 Site1 小, 位移两者接近, 见图 3~6.

表 2 牙齿水平向位移 (site1 56 间种植钉, ×10⁻⁴ mm) Tab. 2. The horizontal displacement value of tooth in site 1 ($\times 10^{-4}$ mm)

作用力值	26	23	21	11	13	16			
1.5 N	- 7.11	0.26	- 3.1 8	- 4.85	- 0.1 4	5.35			
2 N	- 9.48	0.35	- 4.25	- 6.47	- 0.1 8	7.13			
2.5 N	- 0.11	0.44	- 5.31	- 8.08	- 0.23	8.92			
3 N	- 0.1 4	0.52	- 6.37	- 9.07	- 0.28	0.1 0			

表 3 牙齿水平向位移 (site2 67 间种植钉, ×10⁻⁴ mm)

Tab. 3 The horizontal displacement value of tooth in site 2 ($\times 10^{-4}$ mm)						
牵引力值	26	23	21	11	13	16
1.5 N	- 4.70	0.1 5	- 5.30	- 6.93	- 0.1 4	8.72
2 N	- 6.26	0.21	- 7.07	- 9.24	- 0.1 9	0.11
2.5 N	- 7.83	0.26	- 8.83	- 0.11	- 0.24	0.14
3 N	- 9.40	0.31	- 0.1 0	- 0.1 3	- 0.29	0.1 7

表 4 牙齿矢状向位移 (site1 56 间种植钉, × 10⁻⁴ mm)

Tab. 4 The sagittal displacement value of tooth in site 1 (× 10 ° mm)								
作用力值	26	23	21	11	13	16	_	
1.5 N	3.76	2.02	7.86	2.61	-2.04	-2.42		
2 N	5.02	2.69	0.10	3.48	-2.72	3.23		
2.5 N	6.28	3.37	0.13	4.35	-3.40	4.04		
3 N	7.53	4.04	0.15	5.22	-4.09	4.85		

表 5 牙齿矢状向位移 (site2 67 间种植钉, × 10⁻⁴ mm)

Tab. 5	The sagittal	displacement	value of tooth in	n site 2 ((× 10 ⁻⁴ mm)
--------	--------------	--------------	-------------------	------------	--------------------------

牵引力值	26	23	21	11	13	16
1.5 N	5.54	0.20	0.13	5.89	2.18	4.32
2 N	7.38	0.26	1.18	7.86	2.90	5.76
2.5 N	9.23	0.33	0.22	9.82	3.63	7.20
3 N	0.11	0.40	0.27	0.11	4.36	8.64

第36卷

	表 6	牙齿垂直向移位	(site1 56 间种植钉,	× 10 ^{-₄} mm)
Tab. 6	The co	ronal displacem	ent value of tooth i	n site 1 (× 10 ⁻⁴ mm)

作用力值	26	23	21	11	13	16			
1.5 N	-4.48	0.14	-6.61	-1.43	0.10	-3.15			
2 N	-5.97	0.18	-8.82	-1.91	0.13	-4.20			
2.5 N	-7.46	0.23	-0.11	-2.39	0.16	-5.26			
3 N	-8.96	0.28	-0.13	-2.86	0.20	-6.31			

表 7 牙齿垂直向移位 (site2 67 间种植钉, ×10⁻⁴ mm)

Tab. 7 The coronal displacement value of tooth in site 2 ($\times 10^{-4}$ mm)							
牵引力值	26	23	21	11	13	16	
1.5 N	- 2.89	99.15	- 0.1 0	- 3.73	7.12	- 4.76	
2 N	- 3.86	1 3.22	- 0.1 4	- 4.97	9.50	- 6.35	
2.5 N	- 4.82	6.52	- 0.1 7	- 6.21	0.11	- 7.93	
3 N	- 5.79	19.83	- 0.21	- 7.46	0.14	- 9.52	

图 3 2.5 N site1 上颌应力云图

图 4 2.5 N site1 位移趋势云图

Fig. 4 The nephogram of displacement tendency in site 1 under 2.5N

图 5 2.5 N site2 上颌应力趋势云图

Fig. 5 The stress nephogram of maxillary in site 2 under 2.5N

图 6 2.5 N site2 位移趋势云图

Fig. 6 The nephogram of displacement tendency in site 2 under 2.5N

3 讨论

一般认为,当外力通过牙的阻抗中心时,牙将 产生整体平移.从 Burstone 等¹⁵⁻⁸研究可知,当力的 作用点低于上颌前牙的阻抗中心时,上颌殆平面 顺时针旋转移动.而当力的作用点高于上颌前牙的 阻抗中心时,上颌 殆平面将出现逆时针旋转移 动.关于上颌骨及上牙列阻抗中心的位置,目前许 多学者的研究¹⁵⁻¹⁰普遍认为,上颌骨阻抗中心位于 正中矢状面上,其高度在梨状孔下缘,前后位置在 第2磨牙与第1磨牙之间;上颌牙列阻抗中心也在 正中矢状面上,其前后位置在第2前磨牙处,高度 约在前磨牙的根尖处.牵引力方向与阻抗中心的关 系¹¹¹⁻¹⁴,大致可分为以下两种情形:(1)牵引力 通过上牙列阻抗中心时不会产生旋转效应,上牙弓 为平动而无转动;(2)牵引力没有通过阻抗中心 时上牙弓则发生一定的旋转.

临床常用的微螺钉种植体植入位置为上颌第1 磨牙和第2前磨牙的颊侧牙槽骨间隔处,或者第1 磨牙和第2磨牙的颊侧间隔处.关于种植体的高度,通常在牙槽骨较丰满处,并且避开粘膜转折和 颊系带, Sung等^[15]认为亚洲黄种人群中种植体一般 位于弓丝上方 10 mm 处.第2前磨牙与第1磨牙 间因位置靠前,更方便临床医生的植入,但有时该 位置会出现邻牙牙根位置靠近,种植钉无法植入, 因此选择在第1磨牙和第2磨牙之间植入.

临床上,都希望牙齿的移动接近整体移动,这 是因为牙齿的整体平移有许多优点,它可使牙周膜 内的应力分布较均匀,避免牙槽嵴顶和根尖处应力 集中引起的牙根吸收.

本研究结果显示:利用种植体支抗内收上颌完整牙列时,不论是选择 56 间支抗还是选择 67 间支抗,牙弓中各牙的移动趋势接近,即受力点尖牙位置向颊侧移动,磨牙向腭侧移动;牙弓中所有牙均向远中移动,牵引力增大牙齿远移增加;前牙、磨牙向合方移动,尖牙向龈方移动,牙弓合平面发生顺时针旋转.

种植支抗位置靠前,合平面更容易发生顺时针旋转,在2N的牵引力时,合平面的旋转最小,牵引力大于2N时旋转增加;种植体支抗位置靠后时,合平面发生旋转的牵引力值增大,在2.5N时旋转最小,牵引力大于2.5N时,旋转增大.同时,在相同牵引力作用下,种植体位置靠后一些, 牙弓中各牙所受应力较小,但位移没有明显差别.

[参考文献]

- [1] 张翼,张磊,樊瑜波,等. 微植体支抗滑动法内收上颌前牙的三维有限元研究 [J]. 华西口腔医学杂志, 2009,27(5):557-560.
- KIM L SUH J, KIM N, et al. Optimum conditions for parallel translation of maxillary anterior teeth under retraction force determined with the finite element method [J]. Am J Orthod Dentofacial Orthop, 2010, 137 (5): 639-647.

- [3] SUNG S J, JANG G, CHUN Y S, et al. Effective en-masse retraction design with orthodontic mini-implant anchorage: A finite element analysis [J]. Am J Orthod Dentofacial Orthop, 2010, 137(5):648 – 657.
- [4] LEE T C, LEUNG M T, WONG R W, et al. Versatility of skeletal anchorage in orthodontics [J]. World J Orthod, 2008,9(3):221-232.
- [5] BURSTONE C J, PRYPUMIEWICZ R J. Holographic determination of centers of rotation produced by orthodontic forces[J]. Am J Orthod, 1980, 77(4): 396 – 409.
- [6] PROFFIT W R, FIELDS H W. Contemporary orthodontics
 [M]. 3rd ed. Stlouis :Mosby, 2000, 32(2):326 361.
- [7] POULTON D R. Changes on Class II malocclusion and without occipital headgear therapy [J]. J Angle Orthod, 1959,7(6);181-193.
- [8] KOJIMA Y, FUKUI H. Numeric simulations of en-masses space closure with sliding mechanics [J]. Am J Orthod Dentofacial Orthop ,2010,138(6):702 – 706.
- [9] CHEN G, SCHMUTZ B, EPARI D, et al. A new approach for assigning bone material properties form CT imagees into finite element models [J]. J Biomech ,2010,43 (5): 1 011 – 1 015.
- [10] CHUNG G M, SUNG S J, LEE K J, et al. Finite-element investigation of the center of resistance of the maxillary dentition [J]. Korean J Orthod, 2009, 39(2):83 – 94.
- [11] REIMANN S, KEILIG L, JAGER A, et al. Biomechanical finite-element investigation of the position of the centre of resistance of the upper incisors [J]. Eur J Orthod, 2007, 29 (3):219 – 224.
- [12] SUNG S J, JANG G W, CHUN Y S, et al. Effective en-masse retraction design with orthodontic mini-implant anchorage: A finite element analysis [J]. Am J Orthop, 2010, 137(5): 648 - 657.
- [13] BILLIET T, DE PAUW G, DERMAUT L. Location of the centre of resistance of the upper dentition and the nasomaxillary complex :AnExperimental study [J]. Eur J Orthod, 2011,23(3):263 – 273.
- [14] CHUNG G M, SUNG S J, LEE K J, et al. Finite –element investigation of the centre of the maxillary dentition [J]. Korean J Orthod, 2009, 39(2):83 – 94.
- [15] REIMANN S, KEILIG L, JAGER A, et al. Biomechanical finite-element investigation of the position of the centre of resistance of the upper incisors [J].Eur J Orthod, 2007, 29 (3):219 – 224.

(2015-09-20 收稿)