支气管哮喘患者炎性因子水平与气道重构关系探讨

师国强¹⁾, 丁晨光²⁾

(1) 洛阳市第一人民医院呼吸科,河南洛阳 471002;2) 西安交通大学医学部第一附属医院,陕西西安 710061)

[摘要]目的 探讨支气管哮喘患者炎性因子水平与气道重构水平并进行相关性分析. 方法 选择支气管哮喘患者 106 例,分为发作期组及稳定期组.分别有 61 例、45 例,同时选择同期健康体检者 40 例为对照组,分别检测三组 IL-2、IL-5、VEGF、bFGF、TGF-β1水平. 结果 稳定期组 VEGF、bFGF、TGF-β1 较对照组差异有统计学意义 (*P*<0.05),发作期组 VEGF、bFGF、TGF-β1 较对照组及稳定期组差异有统计学意义 (*P*<0.05),发作期组 VEGF、bFGF、TGF-β1 较对照组及稳定期组差异有统计学意义 (*P*<0.05),发作期组 IL-5 较对照组差异有统计学意义 (*P*<0.05),发作期组 IL-5 较对照组及稳定期组差异有统计学意义 (*P*<0.05), 比-2 与 TGF-β1 有相关性 (*P*<0.05), IL-5 与 VEGF、bFGF、TGF-β1 有相关性 (*P*<0.05). 结论 支气管哮喘患者炎性因子水平失调与 VEGF、bFGF、TGF-β1 导致的气道纤维化密切相关,2种因素共同导致支气管哮喘进展.

[关键词] 支气管哮喘;炎性因子;气道重构 [中图分类号] R562.2⁺5 [文献标识码] A [文章编号] 2095 – 610X (2014) 08 – 0086 – 04

The Relationship between Inflammatory Cytokine Levels and Airway Remodeling in Patients with Bronchial Asthma

SHI Guo – qiang¹⁾, DING Chen – guang²⁾

(1) Dept. of Respiratory Disease, The First People's Hospital of Luoyang City, Luoyang Henan 471002; 2) Dept. of Respiratory Disease, First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an Shanxi 710061, China)

[Abstract] Objective To investigate the relationship between inflammatory cytokine levels and airway remodeling in bronchial asthma patients. Methods 106 patients with bronchial asthma were divided into exacerbation group and stable groups, there were 61 cases, 45 cases, separately, 40 cases of healthy people were selected as control group. IL-2, IL-5, VEGF, bFGF, TGF- β 1 levels were detected. Results Compared with the control group, the levels of VEGF, bFGF, TGF- β 1 in stable group were significantly increased (*P* < 0.05). Compared with the control group and the stable group, the levels of VEGF, the the control group and the stable group, the levels of VEGF, the there were significantly increased (*P* < 0.05). The levels of IL-5 in stable group patients were significantly higher than the control group (*P* < 0.05). The levels of IL-5 in exacerbation group patients were significantly higher than those in the control group and the stable group patients (*P* < 0.05). IL-2 and TGF- β 1 showed a significant positive correlation (*P* < 0.05), IL-5 and VEGF, bFGF, and TGF- β 1 showed significant positive correlation (*P* < 0.05). The imbalance of inflammatory cytokine levels is closely related to airway fibrosis induced by VEGF, bFGF and TGF- β 1 in bronchial asthma patients, these two factors work together to lead to bronchial asthma progress.

[Key words] Bronchial asthma; Inflammatory factors; Airway remodeling

[[]基金项目] 国家自然科学基金资助项目(81102247)

[[]作者简介] 师国强(1971~),男,河南周口市人,医学硕士,副主任医师,主要从事临床呼吸科工作.

近年来,随着过敏性疾病的增加及空气污染的 加重,支气管哮喘是呼吸科重要的变态反应性疾病 之一. 该疾病的发生是由肥大细胞、嗜酸性粒细胞 和T淋巴细胞参与的慢性气道炎症并导致气道高 反应¹¹, 当接触多种刺激因素时, 气道发生阻塞和 气流受限,出现反复发作的喘息,胸闷,咳嗽等症 状四. 随着对哮喘研究的深入, 对碱性成纤维细胞 生长因子 (bFGF) 及转化生长因子 β1 (TGF-B1) 及血管内皮生长因子(VEGF)的研究 发现,其水平的升高参与细胞外基质的产生,该过 程的失调有加剧使炎性细胞浸润³³,在哮喘的呼吸 道炎症及呼吸道重塑中起重要作用并加剧气道纤维 化的发展及气道重构进程^[4],但目前针对IL-2,IL-5 等炎性因子及呼吸道重构相关细胞因子在患者体内 水平及意义尚不明确,因此笔者对此进行了探讨,初 步明确了两者之间的关系,现报告如下.

1 资料与方法

1.1 临床资料

选择自2012年1月至2014年1月期间到洛阳 市第一人民医院就诊的支气管哮喘患者106例,男 性57例,女性49例,年龄25~62岁,平均 (45.6±18.4)岁.所有入选患者均符合2008年中 华医学会呼吸病学会制定的《支气管哮喘防治指 南》关于哮喘的诊断标准,并根据该标准将所入选 患者分为发作期组及稳定期组,分别有61例、45 例,并排除其他心、脑、肺、肾等严重脏器功能障 碍、肺结核、肺癌等呼吸系统其他疾病、精神神经 功能异常等疾病的患者.同时选择同期健康体检者 40 例为对照组,男 22 例、女 18 例,年龄 24~60 岁.3 组研究对象在年龄、性别构成等方面具有可 比性(*P*>0.05).

1.2 检验指标

1.2.1 IL-2、IL-5水平检测所有组研究对象均于入选后空腹抽取静脉血 5 mL,采用酶联免疫吸附实验(ELISA)检测 IL-2、IL-5,试剂盒由洛阳 生科生物工程公司提供.

1.2.2 VEGF、bFGF、TGF-β1测定 采用 ELISA 法测定 VEGF、TGF-β1、bFGF,试剂盒由 洛阳生科生物工程公司提供,以上检验严格遵守操 作规程,并保证在试剂有效期内使用.以上检测严 格按照操作流程,并执行质控标准.

1.3 统计学处理

应用 SPSS 软件进行统计分析,计量资料均采 用 $(\bar{x} \pm s)$ 表示,组间比较采用 t 检验,计数资料 采用 χ^2 检验, P < 0.05 为差异有统计学意义.

2 结支

2.1 各组 VEGF、bFGF、TGF-β1比较

比较各组 VEGF、bFGF、TGF-β1 水平,稳 定期组 VEGF、bFGF、TGF-β1 较对照组差异有 统计学意义(P<0.05),发作期组 VEGF、bFGF、 TGF-β1 较对照组及稳定期组差异有统计学意义 (P<0.05),见表 1.

Tab. 1 Comparison of view, $pror, pror-processes three groups (x \pm s)$						
组别	n	VEGF (ng/mL)	bFGF (µmol/L)	TGF- β 1 (μ mol/L)		
发作期组	61	$54.24 \pm 9.38^{* \bigtriangleup}$	$24.65 \pm 5.71^{* \triangle}$	$19.64 \pm 5.47^{* \triangle}$		
稳定期组	45	$39.87 \pm 6.71^*$	$13.42 \pm 2.98^*$	$12.13 \pm 3.95^*$		
对照组	40	27.63 ± 5.52	7.36 ± 1.25	6.24 ± 2.37		

表 1 各组 VEGF、bFGF、TGF- β 1 比较 $(\bar{x} \pm s)$ Tab. 1 Comparison of VEGF, bFGF, TGF- β 1 between three groups $(\bar{x} \pm s)$

与对照组比较, *P<0.05; 与稳定期组比较, △P<0.05.

2.2 各组 IL-2、IL-5 比较

对各组 IL-2、IL-5 水平进行评估,稳定期组 IL-5 较对照组差异有统计学意义(P<0.05),IL-2 差异无统计学意义(P>0.05).发作期组 IL-2、 IL-5 较对照组及稳定期组差异有统计学意义(P< 0.05),见表 2.

2.3 IL-2、IL-5 与气道重构相关性分析

分析 IL-2、IL-5 与气道重构相关因子相关性, IL-2 与 TGF-β1 呈正相关(P<0.05),与 VEGF、 bFGF 无相关性 (*P* > 0.05) . IL-5 与 VEGF、 bFGF、TGF-β1呈正相关 (*P*<0.05), 见表 3.

3 讨论

支气管哮喘的发病与遗传因素和环境因素密切 相关,且近年来由于环境污染的加重,我国支气管 哮喘发病率正在呈快速上升趋势,且由于该病反复 发作,需长期依赖药物治疗,对患者的生存质量造

Tab. 2 IL-2, IL-5 to compare the groups							
组别	n	IL-2(ng/L)	IL-5(ng/L)				
发作期组	61	$4.54 \pm 0.95^{* \bigtriangleup}$	$8.76 \pm 3.17^{* \triangle}$				
稳定期组	45	2.16 ± 0.78	$5.22 \pm 1.21^{*}$				
对照组	40	1.75 ± 0.57	3.57 ± 0.96				

表 2 各组 IL-2、IL-5 比较

与对照组比较, *P<0.05; 与稳定期组比较, △P<0.05.

表 3 IL-2、IL-5 与粘附因子相关性分析 Tab. 3 The correlation between

项目	VEGF	bFGF	TGF- β 1					
IL-2								
P	0.109	0.079	0.518					
r	> 0.05	> 0.05	< 0.05					
IL-5								
P	0.347	0.428	0.446					
r	< 0.05	< 0.05	< 0.05					

成严重影响^[5]. 气道重塑慢性支气管炎发生的病理 基础, 气道慢性炎症涉及肥大细胞、嗜酸性粒细 胞及成纤维细胞等的活化, 在活化过程中炎性介 质的释放, 促进成肌纤维细胞、杯状细胞等的分 化增生, 也是导致呼吸道黏膜受损及高反应性状 态的重要因素^[6]. 随着对支气管哮喘研究的深入, 目前认为在长期慢性炎性细胞刺激下, 细胞外基 质聚集并导致气道发生玻璃样变、新生血管生成、 腺体肥大等, 该过程中 VEGF、bFGF、TGF-β1 等因子起主要作用^[7]. 但目前针对以上因子水平及 相关炎性介质在发病过程中的作用及相关性的研 究较少.

嗜酸性粒细胞细胞(EOS)是参与哮喘慢性炎 症的关键效应细胞, IL-2、IL-5 水平的升高主要 促进嗜酸性粒细胞的分化、成熟并加速 EOS 在气 道内聚集并活化¹⁸. 本研究可以看出,稳定期组 VEGF、bFGF、TGF-β1较对照组显著升高,发作 期组 VEGF、bFGF、TGF-β1 较对照组及稳定期 组均有显著升高.稳定期组 IL-5 较对照组均有显 著性升高,发作期组 IL-2、IL-5 较对照组及稳定 期组均有显著性升高.在正常气道, VEGF、 bFGF、TGF-β1 仅表达于个别细胞内, 而在气道 炎症刺激下, TGF-β1作为最强的致纤维化因子, 参与呼吸道上皮损伤、肌成纤维细胞增殖并促进 基膜下发生纤维化,该过程中肌成纤维细胞 (MFC) 是成纤维性胶原疤痕组织的主要来源[®]. MFC 在非损伤组织中少见,但支气管哮喘发生气 道重构时主要由 bFGF、TGF-β1 调控循环纤维细

胞浸润和激活而产生¹⁰¹,进而调控产生细胞外基质 分子、表达促纤维化发生的生长和细胞因子以及对 凋亡耐受.VEGF在该过程中主要参与新生血管形 成,这是气道重构的先决条件,并加速细胞外基质 沉积,参与呼吸道重塑¹¹¹,因而成为血管形成及重 建、气道重构的强有力刺激因子¹¹².分析炎性因子 与气道重构相关因子相关性,IL-2与TGF-β1显 著正相关,IL-5与VEGF、bFGF、TGF-β1显著 正相关.由此可以看出,TGF-β1等所致细胞外 基质过度增殖所导致的气道重构过程与IL-2,5等 EOS 刺激因子存在密切关系,该过程可能以该类 型细胞因子水平失调为启动因子,引起下游细胞外 基质合成及分解失调,并加速支气管哮喘的进程.

综上所述,支气管哮喘患者炎性因子水平失调 与 VEGF、bFGF、TGF-β1导致的气道纤维化密 切相关,两种因素共同导致支气管哮喘进展.因 此,有必要进行进一步的研究,明确对对发病过程 中相关信号转导途径阻断对支气管哮喘转归与预后 的联系,为有效控制支气管哮喘发展提供理论依 据.

[参考文献]

- ROSCIOLI E, HAMON R, LESTER S, et al. Zinc-rich inhibitor of apoptosis proteins (IAPs) as regulatory factors in the epithelium of normal and inflamed airways [J]. Biometals, 2013, 26(2):205 – 227.
- [2] VODOUNON C A, ABRAMOVA Z I, AIKOU N, et al. The particularities of protein fraction in the apoptosis of lymphocytes of patients with asthma [J]. Pak J Biol Sci, 2013, 16(24):1 873 – 1 883.
- [3] MATEJ R, VASAKOVA M, KUKAL J, et al. Higher TGFbeta with lower CD124 and TSLP, but no difference in PAR-2 expression in bronchial biopsy of bronchial asthma patients in comparison with COPD patients [J]. Appl Immunohistochem Mol Morphol, 2013, 12(3):162–173..
- [4] HEINZMANN A, BAUER E, GANTER K, et al. Polymorphisms of the TGF-beta1 gene are not associated with bronchial asthma in caucasian children [J]. Pediatr Allergy Immunol, 2012, 16(4):310-314.
- [5] HALE L P, KANT E P, GREER P K, et al. Iron supplementation decreases severity of allergic inflammation in murine lung[J]. PLoS One, 2012, 7(9):e45 667.
- [6] SAFARALIZADEH R,NOURIZADEH M,ZARE A, et al. Influence of selenium on mast cell mediator release[J]. Biol Trace Elem Res, 2013, 154(2):299 – 303.
- [7] SHUTE J K, SOLIC N, SHIMIZU J, et al. Epithelial expr-

(下转第102页)

Pharmacol, 2013, 53(10):1 010 – 1 019.

- [7] ZHOU S, FANG X, XIN H, et al. Correction:osteoprotegerin inhibits calcification of vascular smooth muscle cell via down regulation of the notch1-RBP-Jkappa/Msx2 Signaling Pathway[J]. PLoS One, 2013, 8(8):546 - 559.
- [8] KAWAGUCHI R, ZHONG M, KASSAI M, et al. Differential and isomer-specific modulation of vitamin a transport and the catalytic activities of the RBP receptor by retinoids [J]. J Membr Biol, 2013, 246(8):647 – 660.
- [9] LARABEE J L, SHAKIR S M, BARUA S, et al. Increased cAMP in monocytes augments Notch signaling mechanisms by elevating RBP–J and transducin–like enhancer of Split (TLE) [J]. J Biol Chem, 2013, 288 (30):21 526 21 536.
- [10] ZHOU S, FANG X, XIN H, et al. Osteoprotegerin inhibits calcification of vascular smooth muscle cell via down regulation of the Notch1-RBP-Jkappa/Msx2 signaling pathway [J]. PLoS One, 2013, 8(7):e68 987.
- [11] 申红霞. 糖尿病足下肢动脉病变的诊断及介入治疗进展[J]. 国外医学(医学地理分册),2011,32(4):288-290.
- [12] KOO H J, PARK H J, BYEON H E, et al. Chinese yam extracts containing beta-sitosterol and ethyl linoleate protect against atherosclerosis in apolipoprotein e-deficient mice and inhibit muscular expression of VCAM-1 in vitro [J]. J Food Sci, 2014, 79(4):H719 - H729.

(2014-04-27 收稿)

(上接第88页)

ession and release of FGF-2 from heparan sulphate binding sites in bronchial tissue in asthma [J]. Thorax, 2013, 59 (7):557 - 562.

- [8] KATO H, PERL A. Mechanistic target of rapamycin complex 1 expands th17 and IL-4+ CD4⁻CD8⁻ double-negative t cells and contracts regulatory t cells in systemic lupus erythematosus[J]. J Immunol, 2014, 15(2):86 - 93.
- [9] ROGNONI E, WIDMAIER M, JAKOBSON M, et al. Kindlin-1 controls wnt and TGF-beta availability to regulate cutaneous stem cell proliferation [J]. Nat Med, 2014, 16 (24):1 873 - 1 883.
- [10] YUM H Y, CHO J Y, MILLER M, et al. Allergen-induced coexpression of bFGF and TGF-beta1 by macrophages in a

mouse model of airway remodeling:bFGF induces macrophage TGF-beta1 expression in vitro [J]. Int Arch Allergy Immunol, 2013, 155(1):12 – 22.

- [11] HASHIMOTO A, KUROYANAGI Y.Standardization for mass production of allogeneic cultured dermal substitute by measuring the amount of VEGF, bFGF, HGF, TGF-beta, and IL-8[J]. J Artif Organs, 2012, 11(4):225 – 231.
- [12] GUO X,ZUO H,CAO C X,et al. Abnormal expression of Col X,PTHrP,TGF-beta,bFGF,and VEGF in cartilage with kashin-beck disease [J]. J Bone Miner Metab, 2012,24(4):319-328.

(2014-03-20收稿)